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By Benjamin H. Beam and C. Ernest Hedstrom

SUMMARY

Results of supersonic wind-tunnel tests to measure the pitching
moment and the damping in pitch derivatives of two bluff bodies of revo-
lution at supersonic speeds are presented.

One bluff body was comprised of a parabolic forebody and a cone-
shaped afterbody. The other bluff body consisted of a flattened fore-
body with three variations of corner radii and two cone-~shaped afterbodies.

Tests were conducted at various longitudinal locations of the moment
center for each body of revolution. Data were obtained at Mach numbers
of 2.5, 3.0, and 3.5; both with and without artificially induced boundary-
layer transition and at two values of Reynolds number. The results pre-
sented herein are compared with values estimated by impact theory. Reason-
able agreement with theory was obtained for the body of revolution having
a parabolic forebody. The damping in pitch of the body of revolution
having a flattened forebody was destabilizing at zero angle of attack and
sideslip and did not agree with impact theory.

INTRODUCTION

A number of investigators (refs. 1 and 2) have studied the dynami.c
motion of bluff bodies traveling at high speeds on descending paths
through the atmosphere. It is found that the amplitude of the initial
dynamic motion is convergent for vehicles with static aerodynamic stabil-
ity, irrespective of the magnitude of the damping derivatives. Thus,
initially large oscillation amplitudes which arise from misalinement of
the axis of the wvehicle with the flight path will become smaller as the
vehicle descends. In general, this situation applies as long as the
dynamic pressure is increasing with time. The increasing atmospheric
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density as the vehicle descends leads to progressively increasing dynamic -
pressure even though the vehicle speed is dropping. t some point in its
trajectory, however, the vehicle decelerates sufficiently that the dynamic
pressure no longer increases, and at this point the damping in pitch -
derivative, Cmq + Cmd’ becomes very important to the dynamic stability. -

In this region theory indicates that the oscillations of the vehicle will
or will not eventually converge to zero accordingly as the stability

parameter (ref. 1)
2
= C C D C C
£ =Cp - I, +\7 mg + Cpy

is negative or positive. Since Cp 1is always positive and CL1 is

generally low and can be negative for bluff shapes, the convergence of
dynamic motions in this region of the trajectory depends to a large extent
on negative (or stabilizing) values of the dynamic stability derivative
Cmq + Cmd°

The only method which lends itself readily to the calculation of the
damping derivatives of bluff shapes at supersonic speeds is the Newtonian
impact theory (ref. 3, for example) which is a greatly oversimplified
theory especially in regard to detalls of the flow. Recent experimental
tests (refs. 4, 5, 6, and 7) have been directed at providing quantitative
data on these bluff configurations, and more reliable methods of estimat-
ing their characteristics.

[

The purpose of this report is to present values of the static and
dynamic stability derivatives measured on an oscillation mechanism in
a wind tunnel for two bluff bodies of revolution at Mach numbers from
2.5 to 3.5. The data are compared with values estimated using Newtonian
impact theory.

SYMBOLS

The moment reference center for various configurations is shown in
figures 1 and 2.

2
Cp drag coefficient, __dreg
(1/2)pv®s
CLu rate of change of 1lift coefficlent with angle of attack,

9 1ift
oo [(1/2)pv23]
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tching moment

(1/2)pV7sD

pitching-moment coefficient, B

3Cp
%

oCm
3(qD/V)

value of Cmq from Newtonian impact theory

3(&D/V)

value of (Cmq + Cmd) due to hysteresis in pitching moment

diameter of the base of the forebody
pitching velocity

Reynolds number referred to diameter of the base of the
forebody

area of the base of forebody

time

velocity

work

axial location of moment éenter behind nose
angle of attack

mean angle of attack, or steady angle of attack about
which oscillatory pitching motions take place, deg

maximum oscillatory component of angle of attack

assumed limiting angles of attack of pitching-moment
hysteresis (see fig. 12)

angle of sideslip

e—
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£ dynamic stebility parameter, Cp - Chm + (%)2 <émq + Cm®>
c radius of gyration in pitch of vehicle

o mass density of air

w circular frequency of oscillation

Al ) incremental value of a quantity ( )

(") derivative of a quantity with respect to time, a( )

APPARATUS AND MODELS

Test Facility

The experimental data were obtained in the 8- by T-foot supersonic
test section of the Ames Unitary Plan wind tunnel. This test section is
capable of continuous variations of nominal Mach nunber from 2.5 to 3.5
and of a stagnation pressure from 2 to 28 pounds per square inch absolute.

Models

The geometric characteristics of the two bodies of revolution used in
this investigation are shown in figures 1 and 2. The body of revolution
having a paraboloid forebody is shown in figure 1. A sketch of the body
of revolution having a flattened forebody is shown in figure 2. Tests
were also conducted on several variations in the basic shape of this latter
body, and these variations are shown in figures 2(b) and 2(c). Photographs
of this body on the oscillation mechanism in the wind-tunnel test section
are shown in figure 3.

A1l forebodies and afterbodies were made of plastic laminated glass
cloth and were attached to an alluminum alloy base plate and support tube.
After filling, sanding, and buffing all indentations, the outer surfaces
were given a flat white enamel finish. The inner surface of the support
tube to which all components were attached was machined to mate with the
oscillation mechanism. The location of the moment center was varied by
mating the oscillation mechanism to the support tube at different
longitudinal positions.

h
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Oscillation Apparatus

The oscillation apparatus described in reference 8 was used in this
investigation. This apparatus consisted of a dynamic balance and the
necessary supporting electronic equipment to establish a steady-state
forced oscillation of the model. The moments and deflections within the
balance were measured electronically, and from the measured values the
desired static and dynamic derivatives were evaluated. The model oscil-
lation was of a single degree of freedom having a maximum amplitude of
il-l/Eo. Deflection galvanometers indicated visually the steady-state
values of oscillation amplitude and input torque required to maintain
oscillation. The oscillation frequency depended upon the natural oscil-
lation frequency of the model on the crossed-flexure spring suppor®t within
the balance and had a frequency of approximately 10 cycles per second.
An electronic counter indicated visually the frequency of the model
oscillations.

For some of the tests with the body of revolution having a flattened
forebody, four #4 pounds per square inch miniature electrical pressure
gages were installed in the afterbody at the locations shown in fig-
ure 2(a). The output of these cells was recorded on magnetic tape.

TESTS

Data were taken at Mach numbers of 2.5, 3.0, and 3.5 through a range
of angles of attack at zero sideslip angle for all configurations. Some
data were also taken through a range of angles of sideslip at zero angle
of attack. The Reynolds number for the tests was 3 million except for
measurements of the effect of scale on the body of revolution having a
flattened forebody, for which tests were made at a Reynolds number of
2 million.

Surface roughness was applied to the body of revolution having a
flattened forebody as a means of artificlally inducing transition from
laminar to turbulent flow over the forebody. The increased surface
‘roughness was obtained by applying commercial table salt to a prepared
‘adhesive surface with about 80-percent particle density. The entire
front face including the corner but excluding the base flare was covered
in this way.
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CORRECTIONS TO DATA

Tare corrections to the measured values of damping were determined
from measurements of the damping with the wind tunnel evacuated and at
zero airspeed immediately prior to a series of test runs on a particular
configuration. These corrections, which account for the mechanical
friction effects in the model and oscillation mechanism, were then sub-
tracted from the values of damping derivative measured with the wind on.
The magnitude of this correction to Cmq + Cmd was approximately O.0L4

for all configurations.

A correction was applied to the measured values of Cm, to account
for the change in spring constant of the flexure pivots in the oscillation
mechanism under the heavy drag load encountered on the models. This
correction, which is in the nature of a drag interaction with Cp, , was
computed from known drag forces on these models and the effect of the
resulting compressive forces on the spring constant of crossed flexure
pivots. The magnitude of this correction to CmOL varied somewhat with

Mach number and Reynolds number but was approximately 0.022 per radian
for the body of revolution having a paraboloid forebody and 0.026 per
radian for the body of revolution having a flattened forebody. This
resulted in smaller absolute values of Cma.

Random errors in the data resulting from wind-tunnel turbulence,
buffeting of the model, and errors in the visual reading of the deflection
galvanometers were largely averaged out by repeated measurements. For
each test condition two readings were taken at slightly different maximum
oscillation amplitudes from 1° to 1-1/2°.

Corrections were applied to Mach number and angle of attack based on
stream survey data of the test section indicating local Mach number and
flow angularity in the test region.

RESULTS AND DISCUSSION

The results of wind-tunnel tests on two bluff bodies of revolution
are presented in figures 4 through 11. As mentioned in the introduction,
one of the objectives of these tests was to compare the experimental
results with values estimated from theory for bodies of this type. Since
the Newtonlan impact theory has been shown to be fairly applicable to
bluff bodies in the range of Mach number considered in this report
(ref. 9), and since it is possibly the only theory that can be readily
applied to these shapes, i1t has been used as a standard of comparison.
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In the discussion that follows it will be shown that very different
agreement was obtained in making this comparison with impact theory for
the two bodies considered.

Body of Revolution Having Paraboloid Forebody

The experimental data and calculated values of static stability and
damping in pitch derivatives for the body of revolution having a paraboloid
forebody (fig. 1) are shown in figure 4. Over the relatively small range
of mean angle of attack, wpm, over which tests were conducted, the impact
theory indicates no variation in these derivatives with ap. This is
verified in general by the trend of the experimental data except at a
Mach number of 3.5 with the most forward moment center position (fig. k).
In addition, the afterbody configuration is seen to have a negligible
influence on the measured values of the derivatives, as expected from
impact theory (with one exception noted for a Mach number of 3.5 and a
moment center located 0.292D aft of the nose). The longitudinal stability
derivatives for a mean angle of attack of zero and for various sideslip
angles are shown in figure 5. These data show that the static stability
and damping in pitch derivatives are approximately independent of sideslip
angle for this configuration.

When the data for a mean angle of attack of zero are cross plotted
with location of the moment center as in figure 6, the experimental values
of the static stability derivative le are found to agree closely with
values calculated from impact theory. The experimental values of damping
in pitch derivative Cmq + Cmd are from 15 to 50 percent lower than values

calculated from impact theory. The trend of the damping derivative data
with location of the moment center for both Mach numbers of 2.5 and 3.5
is approximately as indicated by theory. From these data it is concluded
that the Newtonian model of the flow about the body of revolution having
a paraboloid forebody is a fair gulde in estimating the dynamic stability
derivatives in the range of Mach numbers from 2.5 to 3.5.

Body of Revolution Having Flattened Forebody

The basic data for the second body of revolution considered is pre-
sented in figure 7. For this configuration (F2A2 as shown in fig. 2(a))
the experimental values of damping in pitch derivative became positive,
or destabilizing, for mean angles of attack near zero. This effect is
not indicated by the impact theory, calculated values of which are also
shown in figure 7. Experimental values of the static stability deriv-
ative, Cp , more nearly agree with calculated values, but here also there
is a noticeable variation with angle of attack in the experimental data.
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Furthermore, the longitudinal derivative data for a mean angle of attack .
of zero and for various sideslip angles, presented in figure 8, show a

marked variation with sideslip angle. A cross plot of the measured

values of the derivatives at zero angle of attack for this body, similar ‘ -
to that shown in figure 6 for the previous body, is presented in figure 9.

The differences between theory and experiment are apparent.

The dynamic instability at low angles of attack and the lack of
agreement with theory for this shape is a possible source of concern for
simllar configurations in flight. These considerations led to an inves-
tigation of the factors which might cause large variations in damping
coefficient, and in the course of this study several variations in shape
from the basic body of revolution having a flattened forebody were tested.

On the assumption that flow separation or some related boundary-layer
phenomena could be occurring at the small radius corner, or "shoulder,"
two forebodies having different corner radii were tested. On one the
cornexr radius was twice that of the basic configuration and on the other
the corner radius was half that of the basic configuration (see fig. 2(b)).
These variations were selected because the pressure distributions
calculated from impact theory are known to be particularly in error in
the vicinity of a sharp corner. Calculations including an allowance for
"centrifugal forces" (see ref. 3, for example) indicated that the pressure
coefficients could become negative at the corner and depend strongly on :
the corner radius. From these and other considerations it was expected
that variations in corner radius might lead to distinct differences in
the flow about the bodies and the measured values of damping coefficient,
which would account for the anomalous effects observed in figure 7.

The measured effects of these changes in the shape of the forebody
are shown in figure 10. It can be seen that there were some effects of
forebody corner radius on the damping derivative Cmq + Cmd’ but that

the general character of the variations with angle of attack was not
altered materially.

Variations in the afterbody shape from the large afterbody Al to
the small afterbody A, and no afterbody A, (fig. 2(c)) are shown in
figure 10 to result in marked differences in the damping derivative
Cm, + Cmd' This is surprising since the entire afterbody should be in -
the wake of the forebody with very little influence on the stability
because of the low static pressure in this region. The impact theory is
of no use in understanding this situation since, where the entire after- .
body is sheltered from the stream by the forebody, zero base pressure is
indicated. Time histories of the variations in base pressure were
measured with pressure cells in the afterbody and the base of the fore-
body (see fig. 2(c)). Analysis of records of these measurements indicated
only random variations in base pressure coefficient having mean values
less than 0.00L.

S
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Data on the effects of variations in Reynolds number and artificially
induced transition are presented in figure 11 for the flattened forebody
configuration with medium forebody radius and large afterbody. From
shadowgraph studies (not published in this report) it was known that at
a Reynolds number of 2 million the boundary layer was completely laminar
to the separation point at the base of the forebody where it mixed with
the slower moving air in the wake. With roughness applied the boundary
layer was very thick and turbulent at the corner on the forebody. These
changes in Reynolds number and surface roughness resulted in some distinct
differences in values of the damping derivative near zero angle of attack

(fig. 11) but in all cases some positive values of Cmq + Cmd were

observed. These data show that changes in the condition of the boundary
layer over the forebody are not of major importance in accounting for the
observed instability.

Analysis of Damping Due to Hysteresis

Although 1t is apparent from the above discussion that the particular
mechanism which results in positive values of Cmq + Cmd is not well

understood, there is a consistent feature of these data which is of
considerable importance. In figure 4 it may be noted that the static
stability derivative CmOL for the body of revolution having a paraboloid
forebody is quite constant with variations in mean angle of attack. In
figures 7, 10, and 11 it is noted that the variations in Cm, with mean
angle of attack for the body of revolution having a flattened forebody
are much less regular. In fact, in nearly every case where Cmq + Cmd

is seen to become more positive, Cm, DPecomes more negative. Evidently
there is a relation between variations in the two derivatives, and the
manner in which they are related is suggested as follows.

In figure 12(a) a typical variation of Cp with o is shown such
as might correspond with the variation of Cp, shown in figure 7. The
solid line represents the time-averaged experimental variation whereas
the dotted lines represent the probable instantaneous variation of
Cm with «. The hysteresis loop results where there is a lag in the
establishment of the pitching moment following a change in angle of attack.
The different variations in Cp' and Cp" with increasing and decreasing
a may be represented another way as in figure 12(b). Here CmOL can be

represented by two curves, Cmy,' Trepresenting the variation of the static

stability derivative with increasing angle of attack, and Cm@" that
with decreasing angle of attack.

The pitching moment acting through an increment of angle of attack
represents an increment of work. Thus:

U
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aW = % pV2SDC,, do = % PVZSDCm o da (1)
and the net work over a cycle is:
40 =L
_ 1‘_ 2 1 n >
AW—ngSD(fC%ada+fC%adm (2)
- +L
+2
- L pVZSDf 8C,, a do (3)
2 o o

1"

where ®Cp = Cmg' - Cmy'. A consideration of the variation of ®Cm,,

with o, illustrated graphically in figure 12(c), indicates that this
variation will have an approximately sinusoidal shape between the limiting
angles of the hysteresis loop. Thus, on the assumption that the principal
component is sinusoidal, BCmOL in fig. 12(c) can be represented by

8Cp, = -ACy, sin g% s <y < @< oy (&)
and
2
Sh
AW = -pVZSDACm(L - (5)

where Ale is the maximum value of 8Cp,, and can be taken as the
experimentally observed difference in Cp, between 0° and +2° angle of
attack in figure 7 for example.

It is desirable to interpret the work per cycle from hysteresis in
terms of an equivalent damping derivative. For an assumed constant equiv-
alent damping derivative, the work can be calculated from

1 2.+/AD
aW = 5 oV SD(_V> (cmq + cmd>hdg (6)

il
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and since <émq + Cm@> is considered a constant coefficient over the
h

cycle,

+&L
AW = pVSD® <Cmq + Cmd) [ & da (7
h g

The variation of o with time can be considered very nearly sinusoidal
even with the nonlinearities present in the pitching moment

a = aysin wt (8)
/2w

AW = pVSD? (cmq + Cmoz> f aFat (9)
h =7/ 2w

= pVSD? (cmq + cmo.)nnmf (10)

The work done from hysteresis (eq. (5)) can then be equated to the work
resulting from an equivalent damping derivative (eq. (10)), resulting in

2 /v Gn\°
<Cmq + Cmd',>h = - -7?2— Bﬁ) ACma a‘a) , 063 g Qo (ll)

Thus, if one wished to modify the values of damping coefficient, Cmqi’

estimated from impact theory to allow for a hysteresis as above, the
complete expression becomes

1l

Cmqi + <émq + Cmi}n (12)

2
2 \ ah
ongs - %5 (1) 20n(c2 )

Cmq + Cmd

Il
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The above analysis, although approximate, emphasizes several points. One
is that an incremental negative change in Cp,, or a "pitch down charac-
teristic" can lead to dynamic instability where hysteresis is present.
The experimental data in figures 7, 8, 10, and 11 clearly show the relation
between negative incremental changes in Cp, and positive incremental
changes in Cmq + Cmd‘ From this it might be thought that wind-tunnel
force data on the variation of Cp with o would immediately reveal this
type of instability. Actually, this latter view must be accepted with
considerable reservation if at all because the uncertainties in wind-
tunnel force data can lead to ambiguous or erroneous interpretations.
Experimental pitching-moment data from reference 7 and the data of this
report for the same configuration - the body of revolution having a
flattened forebody and small afterbody - are presented in figure 13. The
nonlinearities in the data from oscillation tests which account for the
dynamic instability due to hysteresis are hardly apparent when presented
in this way, and are within the accuracy of the static tests. Thus, with
the uncertainties present in wind-tunnel data, it can be concluded that
an apparently linear variation of Cp with o is not sufficient assurance
that instability due to hysteresis is not present. Alternatively, if the
nonlinearities are large enough to be obvious in the static force data
this could be expected to have profound effects on dynamic stability
where hysteresis is present.

Values of ACmy,  from the experimental data, taken as the maximum
incremental change in Cp, from the oscillation data (e.g., ACmy,, = =0.04
for M = 3.5 in fig. 7), when inserted in equation (11) along with
appropriate test variables result in positive increments of about £0.15
in Cmq_+ Cmd' This magnitude is somewhat lower but of the same order as

that observed experimentally, even though the analysis is not rigorous
because of the assumed equation (M) regarding the shape of the hysteresis
loop. Thus a second point is that useful estimates of the damping
resulting from hysteresis in pitching moment could be made using this
analysis or similar analyses which consider the change in work due to
hysteresis.

A third point involves a consideration of the implications of these
data on the motion of a vehicle in free flight. It has been shown that
the dynamic stability of small amplitude oscillations about an equilibrium
angle of attack can vary markedly with the equilibrium angle of attack.

It has also been shown that the dynamic stability at any given angle of
attack can vary markedly with sideslip angle. The dynamic stability
derivative Cmq + Cmd in general is thus a function of both o and B.

For a body of revolution in free flight, the distinction between o and B
is purely arbitrary and in all likelihood oscillations will occur in
both planes at once, which can be visualized as a point on the nose of
the vehicle spiraling around the flight path. The result is that the
apparent damping of the longitudinal motion will be influenced not only
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by its amplitude but also by the amplitude of the directional motion, and
vice versa. With reference to the body of revolution having a flattened
forebody, it is the opinion of the authors that reliable estimates of the
details of the oscillatory motion in free flight under these conditions
cannot be made by use of the simplified equations of motion and the data
of this report because of the strong nonlinearity indicated in the data.
On the other hand, the body of revolution having a paraboloid forebody
exhibits acceptable characteristics for analysis of its oscillatory

motion on the basis of linearized equations, and the data of this report
along with appropriate values of Cp and Clu could be used in assessing

its stability.
SUMMARY OF RESULTS

The results of wind-tunnel oscillation tests on two bodies of
revolution at Mach numbers from 2.5 to 3.5 can be summarized as:

1. TFor the body of revolution having a paraboloid forebody, the
static stability and damping in pitch showed little variation with angle
of attack and sideslip and was in fair agreement with impact theory.

2. TFor the body of revolution having a flattened forebody,
Cmq + Cmd was positive, or destabllizing, near zero angle of attack and

zero sideslip, was strongly dependent on « and B, and did not agree with
impact theory. The observed variations in damping were strongly influ-

41 P o R W by e e o 1
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3. A study of the experimental data indicates that a relation exists
between variations in static stability and damping in pitch. An expla-
nation of this effect on the basis of hysteresis is suggested in this
report.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., May 29, 1959
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Figure 3.- Photograph of model (parabolic forebody with afterbody) in
test section.
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Figure 6.- The variation of static stability and damping in pitch with
the location of the pitching axis on parabolic forebody with after-

body at ap = o°.
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Figure 7.- Basic data on body of revolution having flattened forebody;
medium forebody with small afterbody (FoA,) at two moment center
positions and at three Mach numbers.
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Figure 9.~ The variation in static stability and damping in pitch with
the location of the pitching axis for the body of revolution having
a flattened forebody (F.A,) at ap = 0°.
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Figure 10.- Effect of shape variables (three afterbody configurations

with each of three forebody configurations) on the flattened forebody
with moment center located at 0.251D and having no forebody roughness.
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Figure 10.- Concluded.
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Figure 11.- Effect of Reynolds number and forebody roughness at three
Mach numbers for the flattened forebody configuration with medium
forebody radius and large afterbody; moment center = 0.251D.
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(2) Cu vs. o illustrating hysteresis.
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Figure 12.- Aerodynamic relations employed in evaluating effect of
aerodynamic hysteresis on damping.
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Figure 13.- Variations of Cp vs. @ compared with static-force data
from reference 7 for the body of revolution having a flattened
forebody with small afterbody and moment center at 0.251D.
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